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Abstract: We present a generic route to classical light condensation (LC) in 
linear photonic mode systems, such as cw lasers, with different grounds 
from regular Bose-Einstein condensation (BEC). LC is based on weighting 
the modes in a noisy environment (spontaneous emission, etc.) in a loss-
gain scale, rather than in photon energy. It is characterized by a sharp 
transition from a multi- to single-mode oscillation. The study uses a linear 
multivariate Langevin formulation which gives a mode occupation 
hierarchy that functions like Bose-Einstein statistics. Condensation occurs 
when the spectral filtering has near the lowest-loss mode a power law 
dependence with exponent smaller than 1. We then discuss how 
condensation can occur in photon systems, its relation to lasing and the 
difficulties to observe regular photon-BEC in laser cavities. We raise the 
possibility that experiments on photon condensation in optical cavities fall 
in a classical LC or lasing category rather than being a thermal-quantum 
BEC phenomenon. 
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1. Introduction 

Bose-Einstein condensation (BEC) was predicted in 1924-5, but was experimentally observed 
seventy years later with atomic particles at ultra-low temperatures [1,2]. The interesting 
question if and how can BEC occur with non-atomic bosons, such as photons, also attracted 
attention. A recent paper reported on the observation of photon-BEC in an optical micro-
cavity [3,4] at a room temperature, and earlier work demonstrated BEC of polaritons [5,6] and 
magnons [7]. 

Classical systems can also show condensation effects. We theoretically and experimentally 
found, for example that the light in actively mode-locked lasers shows in some cases 
condensation behavior [8,9]. In the condensate state an optimum short pulse, which 
corresponds to the lowest pulse mode, becomes dominant in the cavity. It was also noted there 
[8] that in higher than 1-dimensional laser mode systems transverse spatial loss modulation or 
spectral filtering can lead to condensation. We also mention other important theoretical work 
on condensation phenomena with classical nonlinear waves [10], disordered lasers [11] and 
the review in Ref. [12]. The many-body nature of laser modes has been discussed in earlier 
work. We developed a broad thermodynamic-like approach for mode-locked lasers showing, 
for example, that mode-locking is a phase transition [13–17], and it also exhibits critical 
phenomena [18,19], in the deep statistical mechanics meaning, where noise takes the role of 
temperature. 

In the present work we deal with a generic mode system with noise, represented by a basic 
multi-mode cw laser cavity, without nonlinear terms, that nevertheless is found to exhibit a 
route to condensation which is formally very similar to BEC in a potential-well [20]. This 
laser light condensation (LC) phenomenon is based on very different grounds than regular 
BEC. Its “energy” levels are measured in a loss-gain scale, inherent in laser cavities, where 
the “ground-state” is the lowest-loss mode, and noise, also inherent in lasers, has the role of 
temperature. The loss scale gives a mode occupation hierarchy and power spectra that 
resemble the Bose-Einstein distribution and leads to laser light-condensation (LC). It has 
special properties compared to regular BEC, as we discuss below. For example, the condensed 
state can be anywhere in the spectral band, in contrast to BEC where it is always at the lowest 
energy (frequency) state. 

It would be therefore interesting to raise the possibility that photon-BEC experiments in 
optical cavities [3] can fall in a classical LC or lasing category rather than being a quantum-
thermal based photon-BEC phenomenon. We shall argue that LC and photon condensation do 
not provide a new type of photons (“super-photon”?) or a new “quantum” light state, not more 
than a single-frequency laser does. It is however a challenging topic that needs further study 
and experimental work. 

2. Mathematical route to laser light condensation (LC) 

The ingredients for LC to happen are very simple while having a generic nature: many modes 
(“particles”), noise (spontaneous emission, thermal etc.) which injects light into those modes, 
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a gain part, and certain conditions on the loss-gain filtering spectrum (loss “potential-well”) as 
discussed below. A typical example for such system is a cw laser. The equations of motion for 
the evolution of light modes circulating in the cavity are taken in a most simple form, without 
dispersion, modulation and nonlinear terms [21], or other linear or nonlinear rate equations 
[22,23], but with a noise source [13–19]. We have a multivariate Langevin equation (with 
shared and variate-dependent coefficients, shown to be a key part for condensation): 

 ,( )m
m m m

da
g a

d



    (1) 

where ( )
m

a   are the slowly varying electric field complex amplitudes of the modes (in d-

dimensions: 
1,... dm m ma a ),   is the long term time variable that counts cavity roundtrip 

frames, and g  is a slow saturable gain factor, shared by all modes. It functions as a Lagrange 

multiplier (and 
0g     as “chemical potential”) for setting the overall cavity power P, 

and
m  is spectral filtering (loss dispersion) due to frequency and mode dependent loss, 

absorption and gain. 
m

  is an additive noise term that can originate from spontaneous 

emission, or any other internal or external sources. It is modeled by a white Gaussian process 
with covariance 2T : 

  *
( ) ( ') 2 '

m n mn
T          ,  and  ( ) 0m    , 

where    denotes average. We describe the modes frequency by 

0 0( / )(| | )c n k k       (where k is the wavevector and n is the refractive index), 

measured with respect to the linewidth center 
0 0( / )ck n  . The modes discrete relative 

frequencies are 
m

 . With the continuous variable we have ( ) ( , )
m

a a   , and 

( )
m
   . We note that our study is applicable to discrete modes, as well as to continuous 

frequencies, alluding to the common dual (but not necessarily the same) terminology and 
meaning of single-mode and single-frequency lasers. 

An important part that we add in this work, compared to the usual laser formulation 

[22,23], is to allow and examine various spectral dependences for ( )  , that is usually taken 

to be parabolic. This is a key point that opens the way for condensation. We show in this work 

that for certain spectral filtering functions ( )  , a linear mode system with noise provides a 

route to condensation with a transition of noise broadened spectra to a single-frequency 
oscillation. 

We turn to the analysis that leads to LC, which resembles the BEC formalism in a 
potential-well [20]. We obtain from Eq. (1), at steady state, the overall power: 

 *

0 00

( )N

m m m
m m m m

dT T
P p a a T

g g g


  

   
      

        (2) 

For the integral at the right hand side of the equation with the continuous net loss variable, 

we define the density of loss states ( )   that is shown to have a prime role for condensation 

occurrence. The first term at the right hand side of Eq. (2) gives the power of the lowest loss 

( 0 ) mode, and the second term is the power in all of the higher modes. We can right away 

notice the resemblance to BEC in a potential-well [20]. The weight for each spectral 

component depends on ( )   and a factor 01/( )g    that replaces the Bose-Einstein 

statistics. Here the upper limit of the integral, 
N

 , is set by the spectral filtering (loss 

“potential-well”) depth. However, it is the density of the low loss-levels at 0   that 
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determines the integral convergence. We therefore take the spectral filtering functional 

dependence as a power law around 
0
 : | | | |        where 

0
/    , 

0


     

and 
0

  is the spectral filtering width. It can be shown that it gives the following density of 

states (modes) in d-dimensions [9,20]: 

 
1

( ) ( | | ) ( )
(2 )

dd d

d

V C
d k  


     

 
   , (3) 

where 
1 1

0
/ [(2 ) ], 1,

d d

d d d
C V b nk c  

 
    

d
V  is the d-dimensional resonator volume, 

( )x  is the Dirac delta function, and 2, 2 , 4
d

b    for 1,2,3d  , respectively. We could 

also use for the calculation ( ) ( /(2 ) / | |d

d kV dS     , where dS  is a surface element at 

constant   in the k  space. 

` 

Fig. 1. Spectral filtering: (a) Power law function with 1   and 0.8  . (b), (c) Cut structures 

(solid line) obtained for example from sections of Gaussian (can be exponential etc.) filtering 
spectra (combined frequency dependent losses/absorption and gain). They can result from 
various frequency cutoff mechanisms, such as the far apart longitudinal mode separation in 

microcavity lasers [3,4]. The cuts lowest loss (
0
 ) mode at 1    are redefined to be at 

0  . 

We now return to Eq. (2), and specifically to the integral at the right hand side. 

Condensation occurs when the integral converges at 0  . Then the power population of the 
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light at higher than 0   levels stays unchanged (filled) at 
0

( ) /
N

cP T d



     . Therefore, 

additional pumping that increases P  beyond 
c

P  must be channeled into the lowest level 

power 
0 0

/ ( )p T g   which starts growing macroscopically. The integral converges when 

0  , i.e. 1   (nonsmooth ( )   at 0   and concave, at least at 0   , as shown in 

the illustrative examples in Fig. 1). At condensation (
cP P ), the net gain of the lowest mode 

(“chemical potential) is 
0

0g    . 

We note that ( )   doesn’t have to be symmetric for condensation as long as the slope of 

( )   is smaller than 1 at 0  . Examples are the spectral slices in Fig. 1 cut from broad 

spectra (e.g., Gaussian, exponential) that can result from various reasons, such as boundary-

condition caused cutoffs. We also note that except for the prefactor in ( )   the condensation 

condition doesn’t depend on the dimension d, except when additional spatial or temporal 
filtering or modulation exists on other dimensions (e.g. transverse) as noted in Ref. [8]. 

The noise induced spectrum (mode-population) is given by the integrand of Eq. (2) 

expressed with the 
0/    variable: 

 

0

( )
( )

dC T
p

g 
 

  
. (4) 

For the power law spectral filtering, we have 0( ) / [ ]dp C gT       . Figure 2a 

shows spectra for 0,8   and various overall power values P (or  s), below and at 

condensation. 
More generally, we can have other spectral filtering functions. Then, since the 

condensation is determined by the exponent near 0  , it is required to have for 

condensation: 
0

1
d

d








. Away from 0  , ( )   can have any dependence that 

experiments yield. In many cases there are exponential sections that can be expressed around 

0
  as | |( ) ( 1)e e     . Here the slope at 0    is 1  , just on the verge of 

condensation. We can then obtain for the mode density, /[ )( ) ( ]
d e

C      , and for the 

spectrum (beyond 0  ): 

 

e 0

| |
( )

( 1) ( )

dC T
p

e g 
 

  
, (5) 

where 
0

  . This equation with the exponential term resembles thermal Bose-Einstein 

distribution and has implications to the discussion below on the LC connection with photon-
BEC experiments. Figure 2b shows graphs of this spectrum for various  s. We can see the 

broad thermal-like exponential dependence. 
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Fig. 2. Light spectra, in a semi-logarithmic scale, obtained by Eqs. (4) and 5: (a) For the power 

law dependence spectral filtering example (Fig. 1a), with 1   and 0.8  . The various 

graphs correspond (from bottom to top) to 
0

0.4, 0.2, 0.1, 0g        , and respectively 

to / 0.23, 0.3, 0.4, 1
c

P P  . In the cut examples (the high and low pass filters in Fig. 1b) the 

spectra have only the right or left of 0   sides. (b) For the exponential spectral filtering 

given by Eq. (5), with the above  s, 
e

1    and 1.5  . In both figures, the three lower 

graphs correspond to non-condensate states, and the upper one to condensation. At and beyond 

the condensation transition, 0  ,and the spectrum stays as in the top graph, except for the 

lowest-loss mode 
0

p  at 0   that grows upon further pumping (not shown here, but given in 

Fig. 4). 

Figure 3 shows the “chemical potential” (
0

g   ) dependence on P, for 0.8  .   is 

always negative before condensation, and becomes zero at condensation. The condensation is 

shown in Fig. 4 by the power dependence of the normalized low-loss mode 
0 / cp P . Above the 

phase transition (
c

P P ) all the excess power goes to the condensation state 0p . This is the 

laser LC route to condensation, characterized by the sharp transition from a multi- to single-
mode oscillation. 
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Fig. 3. Normalized “chemical potential” 
0

( )g    as a function of the overall normalized 

laser power / cP P , for 1  , 0.8  ,  and 1
N

  . 

 

Fig. 4. Condensation transition: Normalized lowest mode power 
0

/
C

p P  as a function of the 

overall normalized laser power for for 1  , 0.8  ,  and 1
N

  . Above the phase 

transition (
C

P P ) all the excess power goes to 
0

p - the condensation state. 

3. Discussion on lasing, LC, photon-BEC and experiments 

LC is formally similar to BEC in having: 

a. Non-interacting particles - bosons in BEC and light-modes in LC. 

b. Particle distribution - Bose-Einstein statistics vs. loss-dependent mode weighting in 
LC. 

c. A global constraint on the overall bosonic particles number in BEC vs. the overall 
light-modes power in LC. 

d. The chemical potential in BEC corresponds to the lowest-mode gain minus loss in LC. 
In both cases it is negative below condensation, and approaches and becomes zero at 
and above the transition. 
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e. Certain conditions on the density of states function for bosonic particle and light-
modes. 

f. A similar mathematical route to condensation in BEC and LC. 

There are however a few important differences between LC and BEC, besides the basic 
one that LC is classical and BEC is a quantum-thermal effect. We specify the main ones: 

a. The states (modes) hierarchy (“energy ruler”) in LC is measured by loss-gain, 
compared to photon energy (frequency) in BEC. 

b. It is a general noisy system in LC vs. thermal equilibrium, characterized by 
temperature, in BEC. 

c. Laser LC occurs at the lowest-loss state ( 0  ), which can be anywhere in the 

spectral band, and not necessarily at the lowest photon energy ( )  state, as it is in 

BEC. 

d. The spectrum of the oscillating modes in LC (Fig. 2) is dictated by the loss scale. It is 
“noisization” rather than the BEC thermalization spectrum [4]. Unlike BEC, the 

spectra can span over frequencies above, or below, or at both sides of 0  . We 

also note that in LC, below 
c

P , there is a hole in ( )p   near 0  , (
0| |k k ), 

resulting from ( 0) 0    , but not in ( )p   (in the frequency domain), as seen in 

Fig. 2. In BEC, prior to condensation, there is a hole in the energy distribution at zero 
energy (as in black-body radiation spectra), which is always at the lowest possible 
energy (frequency) [20]. 

e. Unlike regular BEC [20], there is no dimensional dependence in LC when the 
condensation results from spectral filtering, that operates in one dimension (  , at 

the 
0| |k k  sphere shell), except for a factor that results from the d-dimensional 

sphere surface. Nevertheless, when there are in the system other space (or time) 
dependent loss-gain filtering (or modulation), like in two dimensional transverse 
mode systems [3,4], the condition for condensation can be different [8]. 

We elaborate on the LC and BEC connection and the relation to lasers and experiments. 
Both cases are characterized by a transition to a single-frequency oscillation. Such a transition 
can also occur in regular lasers, like in ideally homogeneous lasers [23]. In a way, every 
single-frequency laser could have been regarded as a condensate state. (Photon densities in 
single-frequency lasers can be much higher than in the microcavity experiment [3].) In those 
lasers the single-mode oscillation is explained by a nonlinear saturation effect or a simple ad 
hoc assumption that the first mode to reach threshold clamps the gain profile and therefore 
eliminates the oscillation of all other modes [23]. In LC, it is embedded in the density of states 
where high mode states populated by the noise become filled (for certain quasi-continuous 

mode densities ( )   with exponents 1  ), leading to condensation, without an explicit 

nonlinearity, but with a global constraint, in a similar way to BEC. It is likewise characterized 

by a negative “chemical potential” 
0

g    that becomes zero at condensation (as shown in 

Fig. 3.) It means that we have a different route to a single-mode oscillation than regular lasers. 
In experiments it can be very challenging to relate and identify the different single-

frequency oscillation effects, since they are all done in laser cavities. It is possible that 
experiments in laser cavities fall in LC or a single-mode lasing category, rather than being a 
thermal photon-BEC phenomenon [3]. We have shown the role of spectral-filtering, inevitable 
in lasers, that governs the photon gas “climate”, the “equilibrium” and the spectra in a pumped 
many-mode cavity with gain. In the dye-filled microcavity experiment [3,4], it includes the 
transverse-modes loss-hierarchy (mode-filtering) due to the difference (even if very weak) in 
their transverse waveform, mirror-reflectivity, gain, absorption and other losses. The 
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frequency cutoffs due to far apart longitudinal modes in the microcavity can give the needed 
abrupt spectral filtering profile. However, even without spectral filtering, LC can occur in the 
lateral domain. The situation can be similar to what we suggested in Ref. [8] (see there the last 
paragraph before conclusion), where lateral modulation or confinement, and transverse mode 
filtering, even if the modes had the same frequency, can cause transversal condensation [8]. 
Then the condition on the exponent of the lateral loss profile (“potential-well”) is very much 

relaxed. In two-dimensions, any finite positive   near 0   gives condensation. 

There are also other issues, discussed elsewhere and briefly given here, that need 
consideration in the microcavity experiments [3]. The massively lost photon replacement in 
the cavity by pumping occurs via spectral-loss criterion. It is generally the case in lasers, 
being non-Hamiltonian with frequency dependent dissipation, not in thermal equilibrium, and 
not a grand-canonical ensemble. The microcavity is not an exception. The seemingly large 
photon “keepers” (the mirrors) do not provide better performance than what we usually have 
in many other lasers. The microcavity mirrors have ultra high reflectivity of 0.999985 [3,4], 
and therefore provide a very high finesse. Nevertheless, since the cavity length is small 
(~1.5μm), important parameters value stay in the usual regime. The photon loss through the 
mirrors by itself gives a cavity photon lifetime of ~0.3ns, that is similar or shorter than usual 
values in lasers. Likewise, the gain coefficient needed for steady state oscillation is relatively 
large (~0.2/cm). When adding other losses, absorption and scatterings, one obtains even much 
shorter cavity photon lifetimes and higher gain coefficients. It means that the photon 
population in the cavity is changing very rapidly. The photon number (power) is kept by the 
pumping that induces stimulated emission photons which replace in steady state the lost 
photons. 

Broadened mode-spectra resulting from (amplified) spontaneous-emission (is random 
phase noise) and stimulated-emission, such as those obtained with the transverse-modes in the 
dye-filled microcavity experiment [3,4], basically exist without thermal excitations, at any 
temperature. Such spectra will not “cool-down” to a single frequency by lowering the 
temperature, say to ~0°K, if it were not a single-mode lasing but a thermal-BEC effect. 
(Therefore, it would be crucial to measure in experiments like Ref. 3 the temperature 
dependence of the spectrum in a broad temperature range, and not only at or close to room 
temperatures.) There can be thermal effect in the spectra, since the dye molecules [3,4] alone 
can have within their sub-levels some thermal distribution (with questions and limitations 
[24]) which affects the photon emission. The microcavity experiment however is not a free 
dye-molecules system. Therefore the spectral filtering is not only the dye molecules 
absorption-emission part upon which the Kennard-Stephanov (KS) relation [24] is based. 
Cavities impose on the photons their own additional rules. 

The collapse to a single frequency at the red side of the band in the micro-cavity 
experiment [3] is supposed to support the photon-BEC view. BEC dictates condensation at the 
lowest possible frequency (the extreme “red” side. Therefore, if there is further availability in 
the spectrum at the red side (of the “cut-off”), the BEC peak had to move to there. It is 
therefore important to confirm that the spectrum cannot extend to even lower frequencies. In 
the microcavity experiment [3,4], it seems that there can be a potential spectral region of 
transverse modes below the semi “cut-off”. (The short cavity makes the longitudinal modes 
far apart but doesn’t fully cut the spectrum). It is the region of the high transverse modes of 
the next (to the “red” side) longitudinal mode. Therefore, in a BEC view, the condensation 
frequency has to move to even lower frequencies. Otherwise, one has to talk about isolated 
“spectral islands” free of other than thermal constraints, where photons might have regional 
thermal equilibrium. This possibility would need however further study and verification. In 
the lasing LC view however it can be simple. The idea there is that the loss-scale, and not the 
frequency as it is in BEC, determines the light spectrum in a laser cavity. The red side of the 
cut-off has higher losses (high transverse modes of the next red longitudinal mode) and so the 
light there is damped. It therefore supports the laser LC approach for the microcavity 
experiment. The spectrum with the cut-off due to the far apart longitudinal modes provides the 
needed abrupt loss spectral-filtering profile for the LC phenomenon. Moreover, we have 
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already argued that even much less restrictive condition on the filtering leads to laser 
condensation in two-dimensional laser systems. 

LC can thus explain the microcavity experimental results [3], including the spectra below 
and above the collapse to a single frequency oscillation, associating the low mode population 
near the frequency semi-cutoff as lasing or LC at the lowest-loss transverse mode, and not as 
photon BEC. We also stress that LC can produce and explain exponentially dependent spectra, 
similar to the thermal behavior that was attributed to Bose-Einstein distribution [3,4], as we 
have shown above (Eq. (5) and Fig. 2b) for common exponential loss (absorption and gain) 
spectral filtering functions. 

We mention again that photon densities in single-frequency lasers can be as high as, and 
higher, than what was calculated for a photon-BEC realization, where it was said that “photon 
wave packets spatially overlap” [3]. One may raise questions about that, and argue if there is 
any new (quantum?) meaning there and in other regular (“classical”?) high photon density 
systems, such as LC and single-frequency lasers. 

We conclude this discussion by noting that although we raised questions on experiments 
on photon-BEC, we don’t exclude the possibility to observe it. We think however that the 
whole issue would need further discussion and study, especially of properties that differentiate 
BEC from single-frequency lasing and LC. 

Realization of LC can be obtained in many-mode laser systems. In particular, fiber lasers 
(one dimensional), such as erbium-doped lasers, are very suitable since they can have many 
and dense longitudinal modes in their gain bandwidth. For the loss spectrum, it is possible to 
fabricate synthesized fiber gratings with reflection frequency profiles needed for 
condensation. So can be used other lasers such as the 2-dimensional microcavity [3], relying 
on the transverse modes. In this case, LC condensation can result from either spectral filtering 
or mode filtering and spatial loss modulation [8]. Abrupt spectra can be produced by the 
frequency semi-cutoffs of far apart longitudinal modes in microcavities, while mode filtering 
and spatial modulation by lateral confinement. LC is then expected to occur in transverse 
mode systems [3], as was discussed above. 

4. Conclusion 

We have presented a classical laser light condensation phenomenon (LC) which is based on a 
loss hierarchy in a linear mode system with noise and certain spectral filtering. We discussed 
experimental sides, differences between LC and BEC and difficulties to observe regular 
photon-BEC in laser cavities. Further experimental study is needed to verify all those issues. 

We finally note that the formalism that leads to LC, based on Eq. (1), can have a broad 
scope. It presents a generic many “particle” Langevin equation with friction coefficients 

composed of an independent dispersive part m , and a shared part (g). Besides lasers, we can 

think of various mechanical or biological particles in fluids which follow this model and can 
therefore show condensation behavior. 
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